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This work proposes a supervisory control system based on an optimization layer to calculate the optimum
pH and dissolved oxygen (DO) set-points for the SISO controller, maintaining the process at stable partial
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nitrification. Takagi–Sugeno fuzzy multimodels were implemented to estimate ammonium degradation
and nitrite accumulation from on-line DO and pH values, and updated using off-line measurements.
An activated sludge reactor was operated successfully over 115 consecutive days with the supervisory
control system, achieving ammonium degradation and nitrite accumulation values higher than 95% and
80%, respectively. The on-line estimates of the multimodels showed a prediction error of less than 7% at
steady state operation, and reflected the tendencies shown in experiment to be caused by changes in pH
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. Introduction

The biological nitrification–denitrification process makes it pos-
ible to remove high nitrogen loads from industrial effluents
enerated by, e.g. the fishing, chemical and food processing indus-
ries. During the nitrification process, ammonia-oxidizing bacteria
AOB) oxidate ammonium (NH4

+) to nitrite (NO2
−), and subse-

uently, nitrite-oxidizing bacteria (NOB) oxidate nitrite to nitrate
NO3

−). The nitrate is then sequentially reduced by heterotrophic
enitrifying bacteria (step 1, Fig. 1) to molecular nitrogen (N2) as
he final product. As the nitrite is consumed during nitrification
nd built up again during denitrification, the oxidation of nitrite
nitratation) becomes an unnecessary step [1], since it is feasible
o denitrify the nitrite directly to molecular nitrogen, as shown in
ig. 1 (step 2). Partial nitrification to nitrite (step 2) has three prac-
ical advantages: 25% lower oxygen consumption, 40–60% lower
eed of organics for denitrification, and lower sludge production
1].

In order to achieve partial nitrification, attempts have been

ade to inhibit or limit nitratation (NOB) (step 1, Fig. 1) by apply-

ng low concentrations of oxygen (<2 mg O2/L) and high pH values
>8) [2]. It has been found, however, that the nitrifying bacte-
ia somehow become acclimatized to these conditions [3], and
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itrite accumulation is reduced in the long term. The hypothesis
s therefore proposed that the establishment of unfavourable envi-
onmental conditions for NOB bacteria may avoid acclimatization
nd maintain inhibition on a long term-basis. Using a process con-
rol approach, this study proposes the development of a supervisory
ystem which uses an optimization layer to set pH and DO values
n order to establish environmental conditions favourable to AOB
rowth and unfavourable to NOB growth [4–6].

Supervisory systems have been developed to improve the per-
ormance and increase the operational reliability of the plants.
upervisory control systems include process monitoring, fault diag-
osis, process optimization, set-point generation for SISO control,
nd decision support [7].

Some supervisory control strategies in large-scale plants require
n-line ammonium, nitrite and nitrate measurements [8], which
nvolves major investment. To confront this problem, authors such
s Tomiello et al. [8], Pirsing et al. [9], and Jianlong and Ning [10],
ave made use of two types of experimental measurements: on-

ine, e.g. DO, pH and temperature measurements; and off-line, e.g.
aily analyses of substrate concentrations. This approach has also
een adopted in industrial-scale facilities [8].

Rodrı́guez-Roda et al. [12] propose a three level structure for a

upervisory control system in an activated sludge process. There
s a lower layer for data gathering, including on-line data acqui-
ition, SISO control, and off-line data obtained from laboratory
nalysis. The intermediate layer consists of an expert system and
case-based reasoning system for the diagnosis and detection of
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Nomenclature

AOB ammonia-oxidizing bacteria
AIC1 controller device to regulate pH by manipulating the

addition of carbonate
AIC2 controller device to regulate the dissolved oxygen in

the reactor by manipulating the airflow injected
cNH4

+ inlet ammonium concentration in the reactor
(mg N/L)

cNH4
+,R ammonium concentration in the reactor (mg N/L)

cNO2
−,R nitrite concentration in the reactor (mg N/L)

cNO3
−,R nitrate concentration in the reactor (mg N/L)

DO dissolved oxygen (mg/L)
DO* AIC2 controller set-point (mg/L)
G(s) transfer function
NOB nitrite-oxidizing bacteria
pH* AIC1 controller set-point
Qc carbonate inflow to the reactor, variable manipu-

lated by AIC1 controller
Qa airflow supplied to the reactor, variable manipu-

lated by AIC2 controller
T reactor temperature (◦C)

Greek letters
˛ ammonium oxidation index
ˆ̨ estimated ammonium oxidation index, local esti-

mation of the multimodel
ˇ nitrite accumulation index
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nomalous situations. At the highest level, mathematical models
re used to predict and search for optimum operating conditions.

A decision support level can be constructed based on expert sys-
ems [8,11,13–16]. Pires et al. [14] propose a fuzzy control system
ased on manipulated variables, such as the external recycle and
y-pass flow rates, to ensure low concentrations of nitrate, nitrite
nd COD in the plant effluent. Tomiello et al. [8] use fuzzy rules of
he Takagi–Sugeno type to determine the set-points of SISO con-
rollers for oxygen and biomass concentration, in order to maintain
high COD range and total nitrogen conversion. Serralta et al. [17]

ncorporate a supervisory control using knowledge-based systems
18] and activated sludge models like the ASM1 [19] to modify the
O set-point when a change in the inlet concentration of ammo-
ium occurs. Rodrı́guez-Roda et al. [12] also report a supervisory
ystem using the ASM1 model to search for optimum operating

onditions. Because the structure of these white box models is very
omplex, the number of scenarios evaluated is limited.

The use of an optimization layer at decision support level has
een reported, principally in batch processes [20–22]. Coelho et

ig. 1. Integrated nitrogen removal. Step 1: classical nitrification–denitrification and
tep 2: short-cut via nitrite accumulation.
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l. [20], Kim et al. [21] and Chachaut et al. [22] manage to reduce
eration time and total batch time in a Sequencing Batch Reactor by
eans of non-linear optimization. Instead of white box models, we

ropose to use fuzzy logic such as Takagi–Sugeno multimodels [23].
hese models make it possible to use heuristic algorithms to search
or optimum operating conditions [24] and help to establish simpler
upervisory control systems in plants with well-known behaviour.
n an effort to innovate in the development of the decision support
evel, this study proposes the following objectives:

to implement Takagi–Sugeno fuzzy models capable of estimating
ammonium degradation and nitrite accumulation from on-line
DO and pH measurements;
to implement a self-tuning technique to set parameters from
experimental data, enabling the models to adapt to new operating
scenarios;
to develop a supervisory system using heuristic optimization to
search for DO and pH set-points, leading to efficient operation of
the nitrification process (high ˛ and ˇ indices).

In Section 2 we present the instrumentation of the activated
ludge reactor, the SISO control, the proposed fuzzy multimodels
nd the optimization method. In Section 3 we present the predic-
ions of the Takagi–Sugeno fuzzy models and the operation of the
ctivated sludge nitrification reactor using the supervisory control
ystem.

. Materials and methods

Partial nitrification was evaluated on the basis of nitrite accu-
ulation (ˇ) and ammonium oxidation (˛). Nitrite accumulation

orresponds to the fraction of total ammonia nitrogen oxidised to
itrite, as a function of total oxidation to nitrite and nitrate. Thus
he efficiency indices ˛ and ˇ were calculated as follows:

=
cNO2

−,R

cNH4
+,R + cNO3

−,R
, 0 ≤ ˇ ≤ 1 (1)

=
cNH4

+,O − cNH4
+,R

cNH4
+ ,O

, 0 ≤ ˛ ≤ 1 (2)

.1. Reactor and instrumentation

The nitrification process was carried out in a laboratory-scale
ctivated sludge system, consisting of a 2 L reactor with a 1 L settler.
he plant schema and its instrumentation are presented in Fig. 2.
he reactor was kept homogenized by a mechanical stirrer (HEI-
OLPH, RSR 2050, Germany) at 360 rpm. The temperature (T) was
ontrolled by means of a thermostat (Julabo, Model EC, Germany).
he on-line measurement and transmission of T/pH and dissolved
xygen (DO) were effected by two electrodes (HACH, EC 310, USA,
nd WTW, Oxi 701, Germany, respectively). The pH was controlled
y the addition of Na2CO3 0.2 M using a diaphragm pump (LANG,
ype ELADOS EMP II, 41 L/h, Germany). Aeration was supplied by an
quarium aerator (COSMOS double type 1000, China) and effected
y using pulse width modulation (PWM) for pneumatic valve open-
ng (Festo, 457, MSG-24DC, Germany). Furthermore, the system was
utomated by the use of a PLC (Siemens, Simatic S7-200, CPU 214),
perated with a PC/PLC interface programmed in MATLAB® 6.5. The

, pH, consumption of Na2CO3 solution, and DO concentration were
easured and recorded on-line approximately every second by the

epServer data acquisition program [25]. Communication between
ATLAB ® (client) and the KepServer (server) was effected by using
DE (Dynamic Data Exchange Protocol, Microsoft).
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Fig. 2. Schematic diagram of the instrumentation and

Table 1
Composition of the synthetic substrate solution for the BRDR

Compound Unit Concentration

(NH4)2SO4 mg N/L 1179
MgSO ·7H O mg Mg/L 6.00
K
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4 2

2HPO4 mg P/L 73.2
H2PO4 mg P/L 73.2

The reactor was fed with a synthetic substrate, diluted to
pproximately 250 mg NH4

+–N/L (see Table 1). The operational
onditions were as follows: sludge recycling ratio = 0.6; mean
ydraulic residence time (HRT) = 6 h; mean sludge age = 20 days.
he concentrations of ammonium, nitrite and nitrate were mea-
ured daily using standardized experimental methodology [26].

For monitoring purposes, a graphic user interface [27] was
esigned using the MATLAB® Toolbox Guide [28]. This interface
ade it possible to obtain visual records every second of pH, DO, the

ercentage of time the air valve was open, and the Na2CO3 added.

.2. SISO control

Linear PI controllers of pH and DO were implemented in the

ctivated sludge and tuned to achieve similar responses to those
stimated with predictive controllers (benchmarking).

The input–output transfer functions were obtained by apply-
ng stepped changes of 10% in the manipulated variable. Eq. (3)

c

u

able 2
arameters of the transfer function and SISO control

ontrolled variable Transfer function

K P �

O 1.035 × 10−3 6.896 25.00
H 0.100 0.000 0.100
control system of the activated sludge reactor.

emonstrates the transfer function:

(s) = K

s + p
e−�s

(3)

here K is the gain, p is the pole and � is the delay. The parameters
f Eq. (3) for DO concentration and pH are presented in Table 2.

A predictive controller was designed using the Matlab MPC tool-
ox (Model Predictive Control) [28] which minimises the following
bjective function:

=
N2∑
i=1

(
y
(

t + k

t

)
− r

)2

+ �

Nu−1∑
k=0

�u(t) (4)

here y corresponds to the controlled variable, r is the set-point
nd u is the manipulated variable. The tuning parameters of this
ontroller are N2: prediction horizon, Nu: control horizon and �:
eighting factor. Simulations were done with the transfer func-

ions to determine the tuning parameters with which the shortest
ettling time is obtained.

The PI controllers Eq. (5) were tuned by simulation. The propor-
ional gain Kp and integral time Ti were determined, such that the
esponse obtained was similar to that obtained with the MPC con-
roller. The comparison index between the controllers was the ratio
ontrollers of DO concentration and pH are presented in Table 2:

(t) = Kp

[
e(t) + 1

Ti

∫ t

0

e(�) d�

]
(5)

MPC control PI control

N2 Nu � Ti Kp

400 200 5 × 10−2 23 113
100 50.0 1 × 10−5 1.0 200
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Fig. 3. SISO control for: (a) DO and (b) pH.

ig. 3 presents the closed loop tests to compare the MPC and PID
ontrollers. It may be observed that the settling time was similar
ith these two controllers, 600 [s]. Because the PI controller pro-

rammed in the Siemens S7-200 PLC presents greater availability
han the MPC (programmed in PC), it was decided to implement
he PI controllers as a SISO loop for DO and pH.

.3. Self-tuning fuzzy multimodels for estimating efficiency
ndices

The pH and the DO concentration are the operating parame-
ers which most affect partial nitrification, consequently they were
hosen as entry variables for the fuzzy multimodels. The technique
f first-order linear multimodels triggered by fuzzy logic tools was
sed [8] to find a relationship between the efficiency indices and the
ontrolled variables (pH and DO). The on-line estimation of the effi-
iency indices, presented in Eqs. (6)–(11), is based on the following
uppositions:

In accordance with previous experimental studies [1,5,6,30], the
ranges pH = [7.5–8.5] and DO = [0.8–1.0] mg O2/L were selected
as specific operating zones which promote partial nitrification
to nitrite. Outside these ranges, the proposed model does not
estimate efficiency indices.
The first order linear model between the DO concen-
tration and the efficiency indices varied slightly; it was
therefore proposed to formulate two models for the DO:
one at 0.8 mg O2/L and another at 1.0 mg/L, as shown in
Fig. 4. Both models were mixed using fuzzy logic techniques as

described in Ragot et al. [24].
The multimodels are based on experimental information
acquired over a period of approximately eight months with pH
and DO values obtained every second from the SCADA (Super-
visory Control and Data Acquisition) system. Environmental

�
b
b
n

Fig. 4. Operation zones for the activated sludge reactor.

conditions: T = 23 ± 1.1 ◦C and autotrophic biomass concentration
in the reactor = 1 g ± 0.2 mg VSS/L.

A total of four first-order linear models were identified. Two
ere for estimating locally the ammonium degradation in each

perating zone, ˆ̨ 1(t) and ˆ̨ 2(t), which depend on the estimation
t the previous moment ˆ̨ (t − 1) and on the pH(t) at the current
oment Eqs. (6) and (7):

ˆ̨ 1(t) = 0.06 pH(t) + 0.32 ˆ̨ (t − 1) + ı1˛(k),

DO = 0.8 mg/L and 7.5 < pH < 8.5 (6)

ˆ̨ 2(t) = 0.04 pH(t) + 0.35 ˆ̨ (t − 1) + ı2˛(k),

DO = 1.0 mg/L and 7.5 < pH < 8.5 (7)

he other two models were for estimating locally the nitrite accu-
ulation in each operating zone, ˆ̌ 1(t) and ˆ̌ 2(t), which depend on

he estimation at the previous moment ˆ̌ (t − 1), and on the pH(t)
t the current moment Eqs. (8) and (9):

ˆ̌ 1(t) = 0.05 pH(t) + 0.33 ˆ̌ (t − 1) + ı1ˇ(k),

DO = 0.8 mg/L and 7.5 < pH < 8.5 (8)

ˆ̌ 2(t) = 0.04 pH(t) + 0.31 ˆ̌ (t − 1) + ı2ˇ(k),

DO = 1.0 mg/L and 7.5 < pH < 8.5 (9)

i˛(k) and ıiˇ(k), with i = 1,2, are empirical fitting parameters
pdated with each new set (k) of experimental data. The proce-
ure to find these empirical fitting parameters will be explained

ater.
The equations which take into account the new estimation of

ˆ (t) and ˆ̌ (t) at the current moment depend on the local estimates
iven in Eqs. (6)–(9), and on the dissolved oxygen concentration,
hich is described in the following Takagi–Sugeno-type fuzzy mul-

imodel [24]:

ˆ (t) = ˆ̨ 1(t) �1(DO(t)) + ˆ̨ 2(t) �2(DO(t)) (10)

ˆ (t) = ˆ̌ (t) � (DO(t)) + ˆ̌ (t) � (DO(t)) (11)
i with i = 1 and 2 correspond to the evaluation of the fuzzy mem-
ership function in the DO level present in the process, with values
etween 0 and 1, as shown in Fig. 5. These fuzzy multimodels are
onlinear differential equations.
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evaluations of the objective function (see Figs. 7 and 8), which
Fig. 5. Fuzzy sets for the models weightings (�1 and �2).

Since the fuzzy multimodels were designed at fixed environ-
ental conditions (temperature and biomass concentration in the

eactor), it was necessary to develop a system which would allow
he models to be updated for slight disturbances. A self-tuning tech-
ique was proposed based on the efficiency indices obtained by
xperiment, as shown in Eqs. (12) and (13):

i˛(k) = ıi˛(k − 1) + �˛(˛(t) − �˛(t)), i = 1, 2 (12)

iˇ(k) = ıiˇ(k − 1) + �ˇ(ˇ(t) − �
ˇ(t)), i = 1, 2 (13)

˛ and �ˇ are empirical parameters of the calibration algorithm of
he model while ˛(t) and ˇ(t) represent the experimental efficiency
ndices.

.4. Supervisory control system

The supervisory control system proposed in this work is
escribed in Fig. 6. The operation of the supervisor is based on an
ptimization layer located at decision support level, and is initiated
y the off-line data gathering which permits the self-tuning of the
i parameters (Eqs. (12) and (13)). Once the fuzzy multimodels are
pdated, the function is maximised ˆ̨ (t) + ˆ̌ (t), as will be explained
ater. Once the optimum of pH* and DO* have been found in the
ecision support level, the supervisory system sets the SISO con-
rol references in the reactor (see Fig. 6) allowing the high ˛ and ˇ
ndices to be maintained.

w
M
t
u

Fig. 6. Schematic diagram of the s
g Journal 145 (2009) 453–460 457

In order to migrate smoothly to the new set-point calculated
y the optimizer (pH*/DO* in Fig. 6), the supervisory system sets
he regulatory control references with a constant turnover rate
f 0.1 mg/(L min) and 0.1 min−1 for the DO and the pH, respec-
ively.

The activated sludge reactor was operated with the
upervisory control system over a period of 115 days. The
nvironmental conditions were as follows: T = 23 ± 0.4 ◦C and
utotrophic biomass concentration in the reactor = [0.75–1.30]
VSS/L.

.5. Optimization layer

As shown in Fig. 6 the optimization layer is based on the multi-
odel estimation of ˆ̨ (t) and, using an exhaustive search algorithm

hat maximizes the objective function: Z → 2 (Eq. (14)) for all com-
inations of pH and DO. The execution of the heuristic optimization
lgorithm (Fig. 6) was subjected to certain operational constraints
see Eq. (14)):

Maximize{Z = ˆ̨ + ˆ̌ }
subject to 7.5 ≤ pH ≤ 8.5

0.8 ≤ DO ≤ 1.0
0.9 ≤ ˆ̨ ≤ 1.0
0.8 ≤ ˆ̌ ≤ 1.0

(14)

The heuristic optimization technique [31] consisted in the cre-
tion of a fine search net, dividing the search variables (DO and
H) into small increments. This net was then evaluated to obtain
ll the steady-state ˛ and ˇ values as well as the respective value
f the objective function (Eq. (14)). The advantage of this algo-
ithm is that it always finds the overall optimum in a certain search
rea. The net was generated by dividing the search area from 7.5
o 8.5 for pH, and from 0.8 to 1.0 for DO—in increments of 0.01
or each variable, so that the complete search requires 20,000
ere conducted in time intervals of less than one minute using
ATLAB® 6.5 on a Pentium 4 PC at 2.4 GHz. The heuristic optimiza-

ion algorithm was performed only when the multimodels were
pdated.

upervisory control system.
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Fig. 7. Response surface for ˛ according to the fuzzy multi-model.

. Results and discussion
.1. Fuzzy multimodels for estimating efficiency indices

In Figs. 9 and 10, experimental and calculated efficiency indices
re charted over a period of 100 days. It is observed from calcu-

D
˛
t
w

Fig. 9. ˛ calculated with the fuzzy mu

Fig. 10. ˇ calculated with the fuzzy mu
Fig. 8. Response surface for ˇ according to the fuzzy multi-model.

ated values that the response of ˛ resembled that of a first-order
inear system when it was excited with a step input. While the

O remained constant, there was a strong correlation between
and pH value, enabling the use of linear-system identification

echniques. Using the available experimental data, scattered values
ere eliminated and low-pass filters were applied to the ˛ values

lti-model using the stored data.

lti-model using the stored data.
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ig. 11. Values of ˛ achieved with the supervisory control system in an activated
ludge reactor.

n such a way that the continuation of the curve could be clearly
bserved. The results are shown in Fig. 9, where ˛ values calculated
y the fuzzy multimodel estimated adequately the experimental
ata at different DO and pH values. The prediction of the ˇ index
y the fuzzy multimodel (see Fig. 10) was also satisfactory.

.2. Supervisory control system

Figs. 11 and 12 show the performance of the supervisory con-
rol system with respect to the experimental efficiency indices at
teady state, considering only experimental data with a fluctuation
elow 5%. On-line estimates of ˛ and ˇ were performed and the
odel parameters were updated with each new combination of

xperiment analyses. Above are shown the pH* and DO* set-points,
hich were generated each time the supervisory control system

erformed a new optimization resulting from a model update and
et in the reactor during the whole time delimited in the seven
roups. Note that since the optimum set-points remained the same
fter the self-tuning of the model at 56 days, groups 3 and 4 have
dentical pH* and DO*.

ig. 12. Values of ˇ achieved with the supervisory control system in an activated
ludge reactor.
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ig. 13. Error of fuzzy model predictions for: (a) ˛ and (b) for ˇ. At different opera-
ional conditions (c).

Although the supervisory system can estimate the efficiency
ndices, the most important result of this work was to obtain
igh nitrite accumulation, and simultaneously a low ammonium-
itrogen content in the effluent. Figs. 11 and 12 show that the
upervisory control caused a slight reduction in the high degra-
ation of ammonium ˛ between groups 1 and 5 resulting in an

ncreased accumulation of nitrite ˇ. Campos et al. [32] and Ruiz et
l. [33] report ˛ > 85 and ˇ ranging from 50% to 65% for nitrification
n an activated sludge reactor without a supervisory control system,

hile in this work the use of an optimization layer in the decision
upport level (Fig. 6) resulted in ˛ > 95% and ˇ > 80% (Figs. 11 and 12)
n a long-term basis.

Fig. 11 shows that the supervisory control was able to maintain
xperimental ˛ close to 100% during most of the operation. Because
f the dynamic nature of the fuzzy multimodel, which is based on
ifferential equations, the estimated ˛ presented a transient pro-
le before reaching the steady state. As shown in Fig. 11, from day
5 onwards the set-points of pH* and DO* maintained a stable ˛,
round 98%, with values predicted by the multimodel very close
o those of the experiment at steady state (error lower than 5%).
ig. 12 shows that the quality of the fuzzy multimodel ˇ prediction
as initially (groups 1–3) lower than the experimental ˛ shown in

ig. 11; however, the self-tuning technique improved the ˇ predic-
ion of groups 2–6. In groups 6–7 the poorer quality of ˇ prediction
as compensated by a better quality of ˛ prediction. From day 45
nwards, the supervisory control was able to reach and maintain
ean ˇ indices higher than 85%, and during days 105–115 even

xceeded 95%.
The multimodel was designed for on-line estimation, so dis-

urbances in the on-line input data can occasionally generate

redictions over 100% for ˛ and ˇ, as can be seen in Figs. 11 and 12.

In Fig. 13 the prediction errors of ˛ and ˇ at steady state are
ompared for different updates of the fuzzy multimodels. Fig. 13(a)
resents the prediction errors for ˛ in groups 1–7. Group 3 was
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xcluded because of insufficient experimental data. As shown, both
he mean value and the standard error deviation for ˛ were low
nd constant, between 1% and 2% (except for group 2). Fig. 13(b)
resents the prediction errors for ˇ in groups 2–7; group 1 was
lso excluded due to scattering. The mean error for ˇ was main-
ained below 7% and the quality of ˇ predictions improved during
he model updates (see groups 3–6 in Fig. 13(b)). Considering that
he multimodels were designed in slightly different environmental
onditions to those used during operation of the activated sludge
eactor with the supervisory control (see Sections 2.3 and 2.4), the
elf-tuning technique applied during model updates resulted in the
atisfactory prediction of ˛ and ˇ.

Analysis of the DO–pH operating scenarios was similar to the
trategy of Rodrı́guez-Roda [12], but using an exhaustive search
lgorithm to evaluate all the feasible values of DO and pH. The DO
nd pH values which maximize ˛ and ˇ simultaneously were set in
he reactor by the supervisory control system. This study therefore
ontributes to the formulation of a structurally simple non-linear
daptable model with a strategy which takes advantage of the avail-
bility of on-line and off-line data and the use of an exhaustive
earch algorithm to obtain a stable partial nitrification process with
igh efficiency indices.

To apply the proposed supervisor system on an industrial scale,
ertain deficiencies in the transfer of mass must be considered, for
xample incomplete stirring in the aeration tank. In this case, it
s feasible to complement the multimodels with others valid for
ifferent sections of the reactor.

. Conclusions

A supervisory control system was developed using Takagi–
ugeno fuzzy multimodels with a simple structure and was based
n an optimization layer (exhaustive search algorithm). During 3
onths of operation the supervisory control generated optimum

H and DO set-points in order to maintain an activated sludge
eactor operating at stable partial nitrification with ammonium
egradation (˛) and nitrite accumulation (ˇ) higher than 95% and
0%, respectively.

The Takagi–Sugeno fuzzy multimodels were designed to esti-
ate ˛ and ˇ on-line during the process, updated with off-line

xperimental data. These multimodels predicted the ˛ and ˇ
ndices at steady state with an error of less than 7% for an activated
ludge reactor.
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